Large-Scale Semi-Supervised Learning

نویسنده

  • Jason WESTON
چکیده

Labeling data is expensive, whilst unlabeled data is often abundant and cheap to collect. Semi-supervised learning algorithms that use both types of data can perform significantly better than supervised algorithms that use labeled data alone. However, for such gains to be observed, the amount of unlabeled data trained on should be relatively large. Therefore, making semi-supervised algorithms scalable is paramount. In this work we review several recent techniques for semisupervised learning, and methods for improving the scalability of these algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise-Robust Semi-Supervised Learning by Large-Scale Sparse Coding

This paper presents a large-scale sparse coding algorithm to deal with the challenging problem of noiserobust semi-supervised learning over very large data with only few noisy initial labels. By giving an L1-norm formulation of Laplacian regularization directly based upon the manifold structure of the data, we transform noise-robust semi-supervised learning into a generalized sparse coding prob...

متن کامل

SERBoost: Semi-supervised Boosting with Expectation Regularization

The application of semi-supervised learning algorithms to large scale vision problems suffers from the bad scaling behavior of most methods. Based on the Expectation Regularization principle, we propose a novel semi-supervised boosting method, called SERBoost that can be applied to large scale vision problems. The complexity is mainly dominated by the base learners. The algorithm provides a mar...

متن کامل

Semi-Supervised Convex Training for Dependency Parsing

We present a novel semi-supervised training algorithm for learning dependency parsers. By combining a supervised large margin loss with an unsupervised least squares loss, a discriminative, convex, semi-supervised learning algorithm can be obtained that is applicable to large-scale problems. To demonstrate the benefits of this approach, we apply the technique to learning dependency parsers from...

متن کامل

Large Scale Semi - supervised Linear SVM with Stochastic Gradient Descent ⋆

Semi-supervised learning tries to employ a large collection of unlabeled data and a few labeled examples for improving generalization performance, which has been proved meaningful in real-world applications. The bottleneck of exiting semi-supervised approaches lies in over long training time due to the large scale unlabeled data. In this article we introduce a novel method for semi-supervised l...

متن کامل

Semi-supervised Relation Extraction with Large-scale Word Clustering

We present a simple semi-supervised relation extraction system with large-scale word clustering. We focus on systematically exploring the effectiveness of different cluster-based features. We also propose several statistical methods for selecting clusters at an appropriate level of granularity. When training on different sizes of data, our semi-supervised approach consistently outperformed a st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007